Finden Sie schnell bim 3d für Ihr Unternehmen: 3631 Ergebnisse

Fertigung von Prototypen

Fertigung von Prototypen

Dank unseres modernen Maschinenparks und unserer Expertise in der Additiven Fertigung können wir individuelle Lösungen für unsere Kunden entwickeln und deren Anforderungen gerecht werden. Die Fertigung von Prototypen aus 3D-Druck bietet viele Vorteile gegenüber herkömmlichen Herstellungsmethoden. Durch die additive Fertigung können Prototypen schnell und kostengünstig hergestellt werden, wodurch die Entwicklungszeit deutlich verkürzt wird. Die Komplexität eines Bauteils muss sich nicht mehr nach dem Herstellungsverfahren richten, sondern nach der gewünschten Funktion und dem Design des Produkts. Die additive Fertigung ermöglicht größtmögliche Konstruktionsfreiheit bei der Herstellung von Prototypen. So können komplexe Strukturen und Designs umgesetzt werden, die mit herkömmlichen Herstellungsmethoden nur schwer oder gar nicht realisierbar sind. Darüber hinaus kann die Herstellung von Prototypen aus 3D-Druck ohne zusätzliche Werkzeug- oder Rüstkosten erfolgen. Unser Spezialwissen zur additiven Fertigung macht diese Technologie zu Ihrem Vorteil bei der Herstellung von Prototypen. Wir unterstützen Sie in jeder Phase des Produktentstehungsprozesses bei der Auslegung des richtigen Designs und bringen unser Know-how in eine kosten- und materialoptimierte Produktentwicklung ein. Dabei steht die Funktionsorientierung immer im Mittelpunkt unseres Denkens und Handelns. Durch die Fertigung von Prototypen aus 3D-Druck können auch Kundenindividuelle Bauteile schnell und kostengünstig hergestellt werden. Fehler und Anpassungen können schnell identifiziert und behoben werden, wodurch die Entwicklungszeit verkürzt und die Qualität des Endprodukts verbessert wird. Zusätzlich ermöglicht die additive Fertigung die Erstellung von Prototypen mit geringem Gewicht und reduzierten Einbaumaßen. Dadurch können Kosten gespart und die Leistungsfähigkeit des Endprodukts gesteigert werden.
Fused Deposition Modeling (FDM)

Fused Deposition Modeling (FDM)

Fused Deposition Modeling (FDM), auch bekannt als Fused Filament Fabrication (FFF), zeichnet sich durch seine Materialvielfalt aus. Das Verfahren ist besonders für voluminösen Bauteilen sowie Kleinserien geeignet Max. Größe: 1.000 mm x 500 mm x 500 mm Geeignet für: Prototypen, große Bauteile, Kleinserien Genauigkeit: +/- 0,5 % (min. +/- 0,3 mm) Produktionszeit: ab 1 Werktag WAS IST DAS FDM-VERFAHREN? Das Fused Deposition Modeling (FDM), auch bekannt als Fused Filament Fabrication (FFF), ist ein additives Fertigungsverfahren, bei dem ein Objekt Schicht für Schicht aus einem thermoplastischen Material aufgebaut wird. Dieses 3D-Druckverfahren zeichnet sich durch seine Materialvielfalt aus, da verschiedene Arten von thermoplastischen Filamenten verwendet werden können. Diese Filamente besteht aus verschiedenen Materialien wie ABS, ASA, PLA, PETG, PA, TPU, PC und vielen anderen. Die Materialvielfalt ermöglicht es, dass FDM/FFF für eine breite Palette von Anwendungen eingesetzt werden kann. Je nach den Anforderungen des Bauteils können verschiedene Materialien mit unterschiedlichen Eigenschaften verwendet werden. Zum Beispiel können hochfestes Material für mechanisch beanspruchte Teile, hitzebeständiges Material für Anwendungen mit hohen Temperaturen oder flexibles Material für elastische Bauteile eingesetzt werden. DAs FDM/FFF ist auch für voluminöse Bauteile und Kleinserien gut geeignet. Das Verfahren ermöglicht es, relativ große Bauteile ohne die Notwendigkeit spezieller Werkzeuge oder Formen herzustellen. Es ist skalierbar und erfordert nur wenig zusätzliche Vorbereitungszeit für die Produktion. Daher ist es sowohl für Prototypen als auch für die Herstellung von Kleinserien wirtschaftlich attraktiv. Allerdings weist FDM/FFF auch einige Einschränkungen auf. Die Schicht-für-Schicht-Bauweise kann zu sichtbaren Schichtlinien auf der Oberfläche des gedruckten Bauteil führen. Zudem kann die Bauteilfestigkeit in bestimmten Richtungen aufgrund der Schichtorientierung und des Schichtverbunds variieren. Dennoch kann die Bauteilfestigkeit durch die richtige Materialauswahl und einer konstruktionsgerechten 3D-Gestaltung verbessert werden. Insgesamt ist diese 3D-Drucktechnolgoie eine vielseitiges und zugängliches Verfahren mit breiten Anwendungsmöglichkeiten, insbesondere für voluminöse Bauteile und Kleinserienproduktion.
Additive Einzelteilfertigung und Serienfertigung

Additive Einzelteilfertigung und Serienfertigung

Einsatzfähige Endbauteile aus Kunststoff, Metall und Baustoff. Kaum ein anderer Anbieter hat eine solche Auswahl an Fertigungs- und Qualitätsmessverfahren wie wir vorzuweisen. Additive Einzel- und Serienfertigung Sie möchten Ihre Kunden mit neuen oder verbesserten Produkten begeistern? Sie suchen dafür nach neuen Herstellverfahren und bezahlbarer Qualität? Mit Additiver Fertigung lassen sich heute individuelle Kundenwünsche erfüllen, zukunftsweisende Geschäftsmodelle entwickeln oder ganze Lieferketten transformieren. Designfreiheit ist dabei der Schlüssel zu neuen Funktionalitäten und einem unverwechselbaren Erscheinungsbild. Ob einzelnes Endprodukt, Kleinserie oder größere Stückzahlen, bei FIT finden Sie Lösungen für die Herstellung Ihrer Serienprodukte aus Kunststoffen, Metallen oder Baustoffen in Top-Qualität. Ohne Wenn und Aber. Wir nennen unsere Lösungen rund um die Serienfertigung ADM-Q, ADM-V und ADM-CV, wobei ADM für „Additive Design and Manufacturing“ steht: * „Q“ für „Qualified Single Manufacturing“ * „V“ für „Volume Manufacturing“ *„CV“ für „Customized Volume Manufacturing” Profitieren Sie von unseren umfangreichen Fertigungsmöglichkeiten für Ihre Serienbauteile. Qualifizierte Einzelteilfertigung (ADM-Q) Serientauglichkeit in Auflage 1: Die Additive Fertigung überzeugt ganz besonders, wenn es um die Fertigung eines einzelnen Produkts geht. Nutzen Sie diese Stärke, um Ihr Unikat oder Einzelteil mit definierten Qualitätsanforderungen kostengünstig herzustellen. Dafür stehen Ihnen bei FIT verschiedenste standardisierte Herstellprozesse zur Verfügung. Serienfertigung (ADM-V) Reproduzierbare Qualität: Bei der Nutzung von Additiver Fertigung für Ihre Serienproduktion muss sichergestellt sein, dass Ihre branchenspezifischen Normen und Regularien genauso eingehalten werden wie Ihre individuellen Kosten- und Qualitätsanforderungen. Gerade wenn es um Qualität geht, sind Rückverfolgbarkeit und Reproduzierbarkeit von entscheidender Bedeutung. Bei FIT haben wir genau dafür standardisierte und zertifizierte Prozesse entwickelt, die eine gleichbleibende Qualität sicherstellen, egal ob Sie 5, 500 oder 5.000 Produkte bei uns herstellen lassen. So einzigartig wie Ihr Produkt ist auch der Prozess, den es für die Herstellung Ihres Produktes zu entwickeln gilt. Kundenindividuelle Serienfertigung (ADM-CV) Kunden verlangen heute immer mehr nach individuellen Produkten. Gerade im medizinischen Bereich ist die patientenspezifische Versorgung mit Individualimplantaten, Prothesen oder Orthesen im Trend. Aber auch andere Industrien setzen auf „Mass Customization“. Mit unserer Lösung ADM-CV können auch Sie Ihr Serienprodukt individualisieren.
5-Achs Frästeile

5-Achs Frästeile

2 unserer 4 CNC-Maschinen sind 5-Achs Maschinen. Wir fräsen 3D Teile nach den Zeichnungen unserer Kunden aus verschiedenen Holzwerkstoffen.
CAD Konstruktion

CAD Konstruktion

Unsere CAD-Konstruktion bietet Ihnen die Möglichkeit, Ihre Projekte von der Idee bis zur fertigen Konstruktion zu realisieren. Mit unseren modernen CAD- und CAM-Systemen, einschließlich SolidWorks und Mastercam, können wir Ihre Daten einlesen und optimieren, um präzise Werkzeugkonstruktionen zu erstellen. Unser qualifiziertes Personal arbeitet eng mit Ihnen zusammen, um sicherzustellen, dass Ihre Vorgaben genau umgesetzt werden. Wir bieten Ihnen eine Vielzahl von Datenformaten und stehen Ihnen mit unserer Expertise zur Seite.
Fused Deposition Modeling (FDM): Verwandlung von Filament in Bauteile mit industrieller Stärke

Fused Deposition Modeling (FDM): Verwandlung von Filament in Bauteile mit industrieller Stärke

FDM ist eine auf Filament basierende Technologie, bei der ein temperaturgesteuerter Kopf eine thermoplastische Materialschicht auf eine Bauplattform aufbringt. Bei Bedarf wird eine Stützstruktur aus einem wasserlöslichen Material erzeugt. Mit FDM lässt sich nahezu jede erdenkliche Geometrie erzeugen. Aus diesem Grund finden Sie FDM-Bauteile als Funktionskomponenten in Flugzeugen, als Produktionswerkzeuge in Automobilwerken und als Prototypen nahezu überall.
Polygrafie / Polyjet-/ Inkjet-Verfahren

Polygrafie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-M2: Lange Haltbarkeit, flexibel, formstabil, lackier- und einfärbbar, hohe Festigkeit Nachteile:: Photopolymer AR-M2: Geringe Temperaturbeständigkeit Farben:: Photopolymer AR-M2: Transparent (Gelbstich) Bauteilgenauigkeit:: Photopolymer AR-M2: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-M2: 40 – 55 MPa Max. Betriebstemperatur:: Photopolymer AR-M2: 54 °C Härte:: Photopolymer AR-M2: 86 Shore D Min. Wandstärke:: Photopolymer AR-M2: 0,5 mm Schichtstärke:: Photopolymer AR-M2: 0,015 mm Max. Bauraumgröße:: Photopolymer AR-M2: 297 x 210 x 200 mm
Zerspanung

Zerspanung

In der Zerspanungstechnologie kommt es auf Präzision, Flexibilität und Effizienz an. Unsere Maschinen sind spezialisiert auf die Herstellung komplexer Fräs- und Drehteile, die in vielen Industrien benötigt werden. Ein Blick auf unsere Kapazitäten: • MATEC 30 HV/K: - Ein 5-Achsen Bearbeitungszentrum, ideal für komplexe 3D-Fertigungsaufgaben und 5-Seitenbearbeitung. - Bietet erweiterte Möglichkeiten durch eine große Z-Achse für höhere Werkstücke. - Mit Rundtisch für Werkstücke bis zu einem Schwingkreisdurchmesser von 940mm. - Verfügbar auch als Fräs-Drehzentrum. • Weiler E 40: - Eine Zyklendrehmaschine mit herausragender Zerspanungsleistung. - Einfache Steuerung und extrem kurze Rüstzeiten ermöglichen eine schnelle Programmierung in nur wenigen Minuten. • Alzmetall Alzrapid 32: - Eine Schnellradialbohrmaschine, die schnell und flexibel auf verschiedene Tei-/Spannsituationen angepasst werden kann. Diese Maschinen ermöglichen es uns, anspruchsvolle Zerspanungsaufgaben mit hoher Präzision und Effizienz durchzuführen. Ob es um komplexe Fräsarbeiten, präzise Drehteile oder schnelle Bohrungen geht – wir haben die passende Lösung.
Auftragsmessung - Bei Ihnen vor Ort mit mobiler Messtechnik

Auftragsmessung - Bei Ihnen vor Ort mit mobiler Messtechnik

3D Vermessung von Teilen oder Anlagen kurzfristig, schnell und präzise bei Ihnen vor Ort. - Faro-Arm - Faro-Lasertracker - Laserscanner Steinbichler T-Scan - Streifenlichtprojektion Steinbichler Comet L3D (ähnlich GOM) - Vermessung und Auswertung Zeichnung und / oder CAD-Modell - Auswertung mit Polyworks - Reverse Engineering / Flächenrückführung / CAD-Modelle anhand von Bauteilen erstellen
Topologieoptimierung

Topologieoptimierung

Auf den Anwendungsfall zugeschnittene Bauteilgeometrie mithilfe der Topologieoptimierung und additiver Fertigungsverfahren. Die Topologieoptimierung ist ein numerisches Simulationsverfahren basierend auf der Finite-Elemente-Methode. Basierend auf dem zur Verfügung stehenden Bauraum und vordefinierter Lagerbedingun­gen sowie Lastfälle, werden diejenigen Bereiche iterativ entfernt, die für den individuellen Anwendungsfall nicht relevant sind. Somit visualisiert das Optimierungstool den Kraftfluss im Bauteil und befähigt gemeinsam mit der additiven Fertigung eine maßgeschneiderte und leichtbauzentrierte Auslegung. Wir unterstützen Sie gerne bei Ihrem Vorhaben.
Prototypenbau/ 3-D Druck

Prototypenbau/ 3-D Druck

Mit dem 3D-Druck die schnellste und beste Lösung finden Ihre Skizze / Idee verlangt schnelle Anpassungen und Lösungen. Speziell auf Ihre Bedürfnisse zugeschnitten, bieten wir Ihnen als 3D-Druck-Dienstleister die Möglichkeit, Prototypen innerhalb weniger Tage herzustellen. Mit unseren 14 verschiedenen 3D-Druck Varianten erlaubt es den Druck komplexer Konturen bis ins kleinste Detail. Die feinen und glatten Oberflächen der Druckteile zeichnen diese Druckverfahren aus und geben Ihnen einen genauen Eindruck Ihres fertigen Produkts.
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroClear RGD 810: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroClear RGD 810: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroClear RGD 810: Transparent milchig Bauteilgenauigkeit:: Photopolymer VeroClear RGD 810: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroClear RGD 810: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroClear RGD 810: 45 - 50 °C Härte:: Photopolymer VeroClear RGD 810: 83 Shore D Min. Wandstärke:: Photopolymer VeroClear RGD 810: 0,5 mm Schichtstärke:: Photopolymer VeroClear RGD 810: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroClear RGD 810: 340 x 340 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 ungetempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 ungetempert: Spröde Farben:: Photopolymer AR-H1 ungetempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 ungetempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 ungetempert: 16,1 – 31,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 ungetempert: 72 °C Härte:: Photopolymer AR-H1 ungetempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 ungetempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 ungetempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 ungetempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 getempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 getempert: Spröde Farben:: Photopolymer AR-H1 getempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 getempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 getempert: 15,4 – 38,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 getempert: 103 °C Härte:: Photopolymer AR-H1 getempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 getempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 getempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 getempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroWhite Plus RGD 835: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroWhite Plus RGD 835: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroWhite Plus RGD 835: Weiß Bauteilgenauigkeit:: Photopolymer VeroWhite Plus RGD 835: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroWhite Plus RGD 835: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroWhite Plus RGD 835: 45 - 50 °C Härte:: Photopolymer VeroWhite Plus RGD 835: 83 Shore D Min. Wandstärke:: Photopolymer VeroWhite Plus RGD 835: 0,5 mm Schichtstärke:: Photopolymer VeroWhite Plus RGD 835: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroWhite Plus RGD 835: 302 x 280 x 150 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Tango Black FLX 973: Gummiartiges Aussehen und Eigenschaften Nachteile:: Tango Black FLX 973: Kann über die Zeit spröde werden Farben:: Tango Black FLX 973: Schwarz Bauteilgenauigkeit:: Tango Black FLX 973: ~ 300 µm Zugfestigkeit RM:: Tango Black FLX 973: 2 MPa Max. Betriebstemperatur:: Tango Black FLX 973: keine Angabe Härte:: Tango Black FLX 973: 61 Shore A Min. Wandstärke:: Tango Black FLX 973: 1 mm Schichtstärke:: Tango Black FLX 973: 0,016 mm Max. Bauraumgröße:: Tango Black FLX 973: 302 x 280 x 150 mm
SLA

SLA

Perfekte Mastermodelle für Abformprozesse erstellen wir im Stereolithografie-Verfahren als Design- oder Urmodell direkt aus 3D-CAD-Daten. Perfekte Mastermodelle für Abformprozesse wie z.B. den Vakuumguss und unser eigenentwickeltes RIMFLEX-Verfahren erstellen wir im Stereolithografie-Verfahren als Design- oder Urmodell direkt aus 3D-CAD-Daten. Die Qualität der späteren Produkte oder Prototypen in Stückzahlen von 10 bis etwa 200 Stück hängt in hohem Maße vom Know-how bei der Prozesskonstruktion im Zusammenspiel der eingesetzten Technologien ab. Unsere über 25 Jahre Erfahrung mit Stereolithografie (unsere erste Maschine war eine Stereolithografie-Maschine, seinerzeit die Nr. 5 in Europa!) sind Ihr Vorsprung bei Produktentwicklung, Risikovermeidung und time to market.
Fused Filament Fabrication Technologie (FFF)

Fused Filament Fabrication Technologie (FFF)

Das von uns eingesetzte FFF-Verfahren basiert auf solidem Maschinenbau und ermöglicht kostengünstige 3D-Druck Bauteile mit vielen verschiedenen Kunststoffen. Technische Daten FFF Druckbereich: 400 x 210 x 220 mm Schichtdicke: 0,02-0,4mm Verfügbare Materialien Multec PLA Filament, schwarz o. gelb Filamentworld PLA Filament, glasklar Filamentworld PVA Filament, wasserlöslich Filamentworld Bendlay A96 o. D 65 Multec HIPS, natur Laywood Holzoptik Cherry light brown COTECOM TPU 90 natur COTECOM PA 12 GK 30% Multec PLA-HT (Temperaturbeständig bis 90°C) ABSproTM - Flame Retardant IGUS Iglidur TRIBO I150-PF weiss Weitere Materialien auf Anfrage verfügbar.
PEEK-CF Filament - Extrem hitzebeständig, leicht und abriebfest durch Carbonfasern für höchste Ansprüche.

PEEK-CF Filament - Extrem hitzebeständig, leicht und abriebfest durch Carbonfasern für höchste Ansprüche.

PEEK-CF kombiniert die Hochleistungs-Eigenschaften von PEEK mit der Abrieb- und Hitzeresistenz von Carbon. Es ist extrem leicht und widerstandsfähig und eignet sich daher ideal als Ersatz für Metall in anspruchsvollen Anwendungen, bei denen Gewicht und Abriebfestigkeit entscheidend sind. Die Carbonoptik sorgt zudem für eine ansprechende Ästhetik, was dieses Material vielseitig einsetzbar macht. Eigenschaften und Vorteile: Carbonverstärkt: Vereint die Festigkeit von PEEK mit Carbonfasern. Hitzebeständigkeit: Hält extrem hohen Temperaturen stand. Abriebfestigkeit: Widersteht hoher Beanspruchung durch Abrieb. Leicht: Bis zu 70 % leichter als Metall mit ähnlichen Eigenschaften. Carbonoptik: Für eine ansprechende und moderne Ästhetik. Metallersatz: Ideal für hochbeanspruchte mechanische Teile.
Architekturvisualisierung - Einleitung

Architekturvisualisierung - Einleitung

Vom Entwurf zum Erfolg Architekten, Bauherren und Städteplaner müssen Ihre Ideen erfolgreich verkauft haben, bevor auch nur ein Stein auf den anderen gesetzt werden kann. Wie kaum eine andere gestalterische Disziplin ist die Architektur in all ihren Spezialisierungen darauf angewiesen, dass das Potential und die Pfiffigkeit des Entwurfs von der Zielgruppe immer in der Gesamtheit erkannt und verstanden wird. Andernfalls haben auch die besten Ideen keine Chance, jemals in Stein, Glas, Holz oder Stahl umgesetzt zu werden. Bis in die 90er-Jahre dominierten Zeichnungen und maßstabsgetreue Modelle die Branche. Diese konnten aber natürlich nur bestimmte Aspekte, Ansichten und Funktionen darstellen, ohne dass der Entwurf von absolut fachfremden Personen auch nur ansatzweise “erlebt” und im regionalen Kontext erfasst werden konnte. Seit den Anfangszeiten der digitalen Architekturvisualisierung hat die Technologie enorme Fortschritte gemacht, deren Dynamik sich sehr schön mit den Entwicklungen in der Filmindustrie vergleichen lässt. Inhaltsverzeichnis Architekturvisualisierung - Einleitung Bringen Sie Ihre Ideen in den Fokus der Aufmerksamkeit Vorteile der Architekturvisualisierung Innenraumvisualisierung Workflow - Ihr Entwurf als Ausgangsbasis Anwendungsgebiete für Architektur Rendering Echtzeitvisualisierung | AR | VR Virtuelles Homestaging Virtueller Rundgang Architekturfilm | Animation Architekturvisualisierung - Immobilienmarketing in 3D Möglichkeiten einer fotorealistischen Architekturvisualisierung Gewinne mit der 3D Architekturvisualisierung erzielen Visualisieren Sie Ihr Immobilienprojekt mit LOOQ-MEDIA Visualisieren Sie jetzt Ihr Bauprojekt!
Serienteile

Serienteile

Kleinserien aus dem FDM Drucker werden häufig unterschätzt. Dabei bietet diese Technologie oft die wirtschaftlichste Alternative gegenüber teuren Spritzgussanlagen oder anderen Fertigungstechnologien.
Funktionsprototypen

Funktionsprototypen

Funktionsprototypen testen generelle Funktionsweisen, sowie die Passformen Ihrer Komponenten und Bauteile. Häufig werden konstruktive Schwachstellen erst bei belasteten Prototypen festgestellt.
Art Fabrication

Art Fabrication

Jenseits industrieller Anwendungen bietet der 3D-Druck faszinierende Möglichkeiten in der Welt von Kunst und Design. Jedes Kunstprojekt hat ganz spezifische Anforderungen an die Umsetzung. Art Fabrication Erschaffen Sie Einmaliges! Bei „Art Fabrication“ verbindet sich Kreativität mit innovativer Technologie. Wie jede Kunstform sucht auch die bildende Kunst ständig nach neuen Materialien oder Techniken, um ihren Ideen Ausdruck zu verleihen. Durch die Kombination aus digitaler Kreation und Additiver Fertigung lassen sich dabei vollkommen neue Wege bei der Herstellung von Plastiken oder anderen Kunstwerken beschreiten. Nutzen Sie unsere umfangreichen Möglichkeiten. Gemeinsam verschieben wir die Grenzen des Machbaren und realisieren Formen und Erscheinungsbilder, die bisher unmöglich waren. Wir begleiten Sie dabei von der Idee über die Konzeption und Realisierung bis hin zur Montage. Alles aus einer Hand. Der Weg zu Ihrem Kunstwerk: * Kreativer Austausch: Sie erhalten eine detaillierte Einschätzung zur Machbarkeit sowie einen Überblick über die Möglichkeiten, um Ihr Kunstwerk in der gewünschten Form herzustellen. * Digitalisierung: Ihnen stehen Softwareexperten zur Verfügung, die Sie dabei unterstützen, Ihre Idee in die digitale Welt zu transformieren. * Rapid Prototyping: Sie können testen, wie Ihr Kunstwerk aussehen wird, um notwendige Anpassungen vor der Herstellung vorzunehmen. * Fertigung: Sie erhalten Zugang zu den erforderlichen additiven oder konventionellen Technologien und können mit diesen Ihr Kunstwerk selbst fertigen oder durch uns fertigen lassen. * Installationsaufbau: Sie brauchen sich über den Zusammenbau, Transport und Aufbau vor Ort keine Gedanken zu machen. Auch das übernehmen wir gerne für Sie. * Dokumentation: Auf Wunsch dokumentieren wir Ihr Projekt und sorgen für die entsprechende Vermarktung bzw. Berichterstattung in den Medien.
Umformen (Pressen)

Umformen (Pressen)

Effektives Umformen mit beeindruckender Kraft Unsere Umformfertigung basiert auf präzisen Simulationsverfahren und der langjährigen Expertise unserer Fachleute. Dank modernster Produktionsanlagen, darunter mechanische, hydraulische und Fluidzell-Pressen, sind wir in der Lage, eine Vielzahl von Metallen effizient zu formen. Bei unseren Umformprozessen setzen wir verschiedene Technologien ein, wie beispielsweise das Folgeverbund- oder -transferumformen sowie konventionelles Tiefziehen. Darüber hinaus beherrschen wir auch hydromechanisches Umformen und die Innenhochdruckumformung (IHU). • Präzise Umformsimulation für effiziente Umformung • Verschiedenste Prozesstechnologien • Umfangreicher Pressepark • Werkzeugbau und -instandhaltung im Haus
Umformen (Pressen)

Umformen (Pressen)

Kraftvolles Umformen auf vielfältigen Produktionsanlagen Eine präzise Umformsimulation und jahrelange Erfahrung unserer Fachexperten bilden die Basis unserer Umformfertigung. Mit exzellenten Produktionsanlagen wie mechanischen, hydraulischen und Fluidzell-Pressen formen wir effizient ein breites Spektrum an Metallen. Beim Umformen nutzen wir verschiedenste Prozesstechnologien wie konventionelles Tiefziehen und hydromechanisches Umformen. Auch das Umformen mit Folgeverbund oder Transfer ist möglich. Für die Umformung von komplexen Bauteilen pressen wir in mehreren Schritten und nutzen ergänzend die Wärmebehandlung. Mit unseren Umformprozessen können wir selbst die anspruchsvollsten 3D-Formen in ebenes Blech pressen. • Präzise Umformsimulation für effiziente Umformung • Verschiedenste Prozesstechnologien • Umfangreicher Pressenpark innerhalb der Unternehmensgruppe • Werkzeugbau und -instandhaltung im Haus
Fused Deposition Modelling (FDM)

Fused Deposition Modelling (FDM)

3D-.Druck für diejenigen, deren Ideen keine Grenzen kennen. Prototyping, Kleinserien und Sondermodelle. Wir realisieren Ihre Vorstellung! Das Fused Deposition Modeling (FDM) ist ein auf Extrusion basierendes 3D-Druck-Verfahren. Mit einer beheizten Düse, dem Extruder, werden Filamente (Kunststoffstäbe) geschmolzen und Schicht für Schicht aufgetragen. Auf einer Werkebene (Druckbett/Bauplattform) entsteht das 3D gedruckte Bauteil. Mit dem FDM Verfahren sind gedruckte Bauteile kostengünstig und schnell hergestellt. Deshalb eignet sich dieses 3D-Druck Verfahren gut für Prototypen oder für den Modellbau. Zudem stehen verschiedenste Materialien zur Verfügung!
Fused Deposition Modelling (FDM)

Fused Deposition Modelling (FDM)

Gedruckt wird auf Druckern von Markforged. Das Basismaterial kann dabei mit einem von 4 endlos Fasermaterialien verstärkt werden. KOHLEFASER: Höchstes Festigkeits-Gewichts-Verhältnis und höchste Wärmeleitfähigkeit KEVLAR®: Höchste Abrieb- und Schlagfestigkeit GLASFASER: Bestes Festigkeits-Kosten-Verhältnis und elektrisch isolierend HIGH TEMP. GLASFASER: Bestes Festigkeits-Kosten-Verhältnis. Belastbar bis 105 °C Umgebungstemperatur und bis zu 140 °C Wärmebeständig Einsatzbereche: Betriebsmittel, Prototypen, Mockups, Ersatzteile, Werkzeuge, Montagevorrichtungen und vieles mehr.
Spannen

Spannen

CAD/CAM Bearbeitung - Digitalisierung und Programmierung Erstellung von 3D- Datensätzen und CNC- Programmen nach Kundenzeichnung Effiziente Fertigung auf modernen 5-Achs-Fräszentren Verfahrwege: bis zu 3200x1600x850mm (xyz) Wirtschaftliche Fertigung und Vorrichtungskonzeption von Klein- und Großserien Herstellung nicht genormter technischer Bauteile nach Zeichnung Wir versichern hohe Wiederholgenauigkeit und einwandfreie Qualität Losgröße ab 1 Stück
Konstruktion und Entwicklung

Konstruktion und Entwicklung

In Ihrem Auftrag erarbeiten wir Lösungen für Ihre Fragestellungen und erstellen die erforderliche Fertigungsdokumentation. In unserer langjährigen Konstruktionstätigkeit haben wir eine Vielzahl von Projektaufgaben zur Zufriedenheit unserer Kunden bearbeitet. Insbesondere haben wir Erfahrungen in den Bereichen: Vorrichtungen und Sonderkonstruktionen im Maschinenbau, Fertigungsmittel für die Elektronik und Halbleiterindustrie, Versuchseinrichtungen im wissenschaftlicher Gerätebau und Feinwerktechnik sammeln dürfen. Ausgehend von Ihren Anforderungen analysieren wir die Randbedingungen der jeweiligen Aufgabenstellung, erarbeiten mit Ihnen Lösungskonzepte und setzen diese in Abstimmung mit Ihnen in Entwürfe und fertige Lösungen um. Wir erstellen die Fertigungsdokumentation und fertigen Prototypen oder Einzelstücke bis schließlich die konkret ausgeführte und funktionale Lösung Ihrer Aufgabenstellung realisiert ist. Selbstverständlich setzen wir modernste Konstruktionswerkzeuge zur Lösung Ihrer Aufgaben ein: SolidWorks, Simulation und SolidWorksCAM als unser Standardsystem onshape mit der Möglichkeit unmittelbar die Modelle und Daten mit unseren Kunden zu tauschen, bei gleichzeitig höchster Verfügbarkeit und Sicherheit der Daten
Produkt-Design Maschinenbau & Robotik

Produkt-Design Maschinenbau & Robotik

Wir beraten zu Designstrategien und Umsetzungsthemen und bringen erstklassiges Industriedesign bis in die Serie. Design Strategie Durchdachtes Produktdesign ist kein Zufallsergebnis. Basis für die erfolgreiche Integration einer unverwechselbaren Gestaltung ist die strategische Planung und stringente Durchsetzung einer schlüssigen Designstrategie. Wir finden mit Ihnen die wesentlichen Attribute Ihrer Produkte und deren sinnvolle und umsetzbare Übersetzung in die Designsprache. Produktdesign Entwicklung Ein Designentwurf ist nur ein Puzzleteil im gesamten Designprozess und hat nur Bestand, wenn er sich in Konzeption und Serienentwicklung nahtlos einfügt. Wir entwickeln erstklassiges Produktdesign von der Konzeption über den Entwurf bis zu fertigungsgerechten CAD-Flächen und begleiten Ihr Entwicklungsteam bis zur Designumsetzung in die Serie.